If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+13x=10
We move all terms to the left:
2x^2+13x-(10)=0
a = 2; b = 13; c = -10;
Δ = b2-4ac
Δ = 132-4·2·(-10)
Δ = 249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{249}}{2*2}=\frac{-13-\sqrt{249}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{249}}{2*2}=\frac{-13+\sqrt{249}}{4} $
| 5f=9*15+160 | | 3/4x+1/3x=3/5 | | 0.877x+x=0.766 | | (5y+3)(6+y)=0 | | 3/x+7=-3 | | 9-(5x+1)+2x=8 | | 5-4(x+3)+6x=-11 | | -7=5(2x-1)-2(4x+1) | | 12^n=100 | | 4x^2-16=8x+4 | | 48=1+2(3x-4)+5x | | 3(6-5x)-2(x+1)=135 | | -9x+5+4x=-170 | | 2(x-7)-3x=91 | | p^2-6p-35=0 | | -7x+9+8x=-25+22 | | -19+15=m-5 | | 5(2x-6)=33 | | 21=y-7 | | 5(x-4)=84 | | -6=-x+3 | | -2x+2+3x=-17+6 | | -17+2=m-2 | | -13=x=3 | | {3n-5};n=1 | | 5n-(5-2n)=3 | | 7x-5(9-3x)=3(x+12)-8x | | 1.25x=212420 | | -3x+1+4x=-3+19 | | 75=-1.40(x+5) | | -13+15=m-7 | | (4x+1)/3+(2x-1)/4=17/8 |